Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

José Giraldés, Mark L.<br>McLaughlin and Frank R.<br>Fronczek*<br>Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail:
fronz@chxray.chem.Isu.edu

## Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.039$
$w R$ factor $=0.088$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

# 1-Benzoyl-2(S)-tert-butyl-4-methoxy-6(S)-carbo-methoxy-1,2,5,6-tetrahydro-1,3-pyrimidine: a useful precursor of $\alpha$-alkylated aspartic acids 

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$, the tert-butyl and carbomethoxy substituents on the central ring are syn with respect to each other. The conformation of the central ring is such that the C atom carrying the carbomethoxy group lies 0.609 (2) $\AA$ out of the mean plane of the other five atoms.

## Comment

$\alpha$-Amino acids are receiving increasing attention in view of their interesting chemical and biological properties, both in free forms and as constituents of peptides (Spatola, 1983). The title compound, (I), was prepared to be used as a precursor of $\alpha$-alkylated aspartic acid derivatives. Similar derivatives of $\alpha$-alkylated aspartic acid precursors had been synthesized before (Juaristi et al., 1998). The crystal structure of (I) was determined to prove its successful synthesis.

(I)

The tert-butyl group at C1 and the carbomethoxy group at C 4 are syn with respect to each other. The conformation of the central diazine ring is such that C4 lies 0.609 (2) $\AA$ out of the mean plane of the other five atoms, which are coplanar to within a maximum deviation of -0.043 (2) $\AA$ (for C1).

## Experimental

To a solution of 1-benzoyl-2(S)-tert-butyl-(6S)-carboxyperhydro-pyrimidin-4-one (Juaristi et al., 1996) ( $2 \mathrm{~g}, 6 \mathrm{mmol}$ ) was added silver oxide ( $2.85 \mathrm{~g}, 12.3 \mathrm{mmol}$ ) in 100 ml of dry tetrahydrofuran under argon. The resulting mixture was stirred at ambient temperature for 30 min . Methyl iodide ( $1.11 \mathrm{ml}, 18 \mathrm{mmol}$ ) was added, and stirring was continued for 72 h . The reaction mixture was filtered over Celite (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) and concentrated at reduced pressure. The product was purified by flash chromatography, at first eluting with (hexanes/ethyl acetate, 9:1) and gradually increasing the concentration of ethyl acetate (hexanes/ethyl acetate, $4: 1$ ) and finally eluting with ethyl acetate and acetic acid (ethyl acetate/acetic acid, 4:1) to give 1.47 g ( $74.2 \%$ yield) as a crystalline solid. Crystals were grown by evaporation from hexanes/ethyl acetate, (9:1).

Received 15 January 2002
Accepted 4 February 2002
Online 8 February 2002


Figure 1
View of the title compound showing atom-numbering scheme with displacement ellipsoids drawn at the $50 \%$ probability level.

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \\
& M_{r}=332.39 \\
& \text { Monoclinic, } P 2_{d} \\
& a=10.283(3) \AA \\
& b=8.124(2) \AA \AA \\
& c=11.757(4) \AA \\
& \beta=11.673(11)^{\circ} \\
& V=899.5(5) \AA^{\circ} \\
& Z=2
\end{aligned}
$$

$D_{x}=1.227 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 2391
reflections
$\theta=2.5-30.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Fragment, colorless
$0.45 \times 0.25 \times 0.10 \mathrm{~mm}$

Data collection
KappaCCD diffractometer with
Oxford Cryostream $\omega$ scans with $\kappa$ offsets
Absorption correction: none
8506 measured reflections 2780 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0334 P)^{2}\right.$
$+0.1725 P]$
$w R\left(F^{2}\right)=0.088$
$S=1.03$
2780 reflections
223 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $\mathrm{N} 1-\mathrm{C} 10$ | $1.375(2)$ | $\mathrm{N} 2-\mathrm{C} 2$ | $1.262(2)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{N} 1-\mathrm{C} 4$ | $1.471(2)$ | $\mathrm{N} 2-\mathrm{C} 1$ | $1.453(2)$ |
| $\mathrm{N} 1-\mathrm{C} 1$ | $1.497(2)$ |  |  |
| $\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$ | $7.0(2)$ | $\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $-26.2(3)$ |
| $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$ | $20.5(2)$ | $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$ | $-48.13(19)$ |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$ | $-3.0(3)$ | $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$ | $48.18(19)$ |
| $\mathrm{C} 17-\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 2$ | $-4.5(2)$ |  |  |

The absolute configuration could not be determined, but was assumed to correspond to the known configuration of the starting materials. H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ bond distances in the range $0.95-1.00 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the attached atom ( 1.5 for methyl groups), and thereafter treated as riding. A torsional parameter was refined for each methyl group. Friedel pairs were averaged.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

## References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Juaristi, E., Lopez-Ruiz, H., Madrigal, D., Ramirez-Quiros, Y. \& Escalante, J. (1998). J. Org. Chem. 63, 4706-4710.

Juaristi, E., Quintana, D., Balderas, M. \& Garcia-Perez, E. (1996). Tetrahedron Asymmetry, 7, 2233-2246.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter and R. M. Sweet, pp. 307-326. London: Academic Press.
Sheldrick, G. (1997). SHELXL97. University of Göttingen, Germany.
Spatola, A. F. (1983). Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 7, edited by B. Weinstein, pp. 267-357. New York: M. Dekker.

